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Additional file 1

This additional file contains the APX-hardness proof of problem ffdcj-similarity.

We first give some definitions based on [1]. Thereby we restrict ourselves to maxi-

mization problems and feasible solutions.

Given an instance x of an optimization problem P and a solution y of x, val(x, y)

denotes the value of y, which is a positive integer measure of y. The function val,

also referred to as objective function, must be computable in polynomial time. The

value of an optimal solution (which maximizes the objective function) is defined as

opt(x). Thus, the performance ratio of y with respect to x is defined as:

RP (x, y) =
opt(x)

val(x, y)
. (1)

Given two optimization problems P and P ′, let f be a polynomial-time com-

putable function that maps an instance x of P into an instance f(x) of P ′, and let

g be a polynomial-time computable function that maps a solution y for the instance

f(x) of P ′ into a solution g(x, y) of P . A reduction is a pair (f, g). A reduction from

P to P ′ is frequently denoted by P ≤ P ′, and we say that P is reduced to P ′. A

reduction P ≤ P ′ preserves membership in a class C if P ′ ∈ C implies P ∈ C. An

approximation-preserving reduction preserves membership in either APX, PTAS,

or both classes. The strict reduction, which is the simplest type of approximation-

preserving reduction, preserves membership in both APX and PTAS classes and

must satisfy the following condition:

RP (x, g(x, y)) ≤ RP ′(f(x), y). (2)

We consider the following optimization problem, to be used within the proof of

Theorem 1 below:

Problem max-2sat3(φ): Given a 2-cnf formula (i.e., with at most 2 literals

per clause) φ = {C1, . . . , Cm} with n variables X = {x1, . . . , xn}, where each

variable appears in at most 3 clauses, find an assignment that satisfies the

largest number of clauses.

The formula φ as defined above is called a 2sat3 formula. max-2sat3 [2, 3] is a

special case of max-2satB (also known as B-occ-max-2sat), where each variable

occurs in at most B clauses for some B, which in turn is a restricted version of

max-2sat [4].

Theorem 1 ffdcj-similarity is APX-hard and cannot be approximated with ap-

proximation ratio better than 22/21 = 1.0476 . . ., unless P = NP.

Proof. [Theorem 1, first part] We give a strict reduction (f, g) from max-2sat3 to

ffdcj-similarity, showing that

Rmax-2sat3(φ, g(f(φ), γ)) ≤ Rffdcj-similarity(f(φ), γ),
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for any instance φ of max-2sat3 and solution γ of ffdcj-similarity with in-

stance f(φ). Since variables occurring only once imply their clauses and others to

be trivially satisfied, we consider only clauses that are not trivially satisfied in their

instance. Similar for clauses containing literals xi and xi, for some variable xi.

(Function f .) We show progressively how to build GSσ(A,B) and define genes and

their sequences in chromosomes of A and B. For each variable xi occurring three

times, let Cx1i , Cx
2
i and Cx3i be aliases for the clauses where xi occurs (notice that

a clause composed of two literals has two aliases). We define a variable component

Ci adding vertices (genes) x1i , x
2
i and x3i to A, vertices (genes) Cx1i , Cx

2
i and Cx3i

to B, and edges exji = (Cxji , x
j
i ) and exi

j = (Cxji , x
k
i ) for j ∈ {1, 2, 3} and k =

(j + 1) mod 3 + 1. An edge exji (exi
j) has weight 1 if the literal xi (xi) belongs to

the clause Cxji , otherwise it has weight 0. Edges in the variable component Ci form

a cycle of length 6 (Fig. 1). Variable components for variables occurring two times

are defined in a similar manner. Genomes are A = {(xji ) for each occurrence j of

each variable xi ∈ X} and B = {(Cxji ) : Cxji is an alias to a clause in φ with only

one literal} ∪ {(Cxji Cx
j′

i′ ) : Cxji and Cxj
′

i′ are aliases to the same clause in φ}.
The function f as defined here maps an instance φ of max-2sat3 (a 2-cnf for-

mula) to an instance f(φ) of ffdcj-similarity (genomes A and B and GSσ(A,B))

and is clearly polynomial. Besides, since all chromosomes are circular, the corre-

sponding weighted adjacency graph AGσ(A,B) (or AGσ(AM , BM ) for some match-

ing M) is a collection of cycles only.

Now, notice that any maximal matching in GSσ(A,B) covers all genes in both

A and B, inducing in AGσ(A,B) only cycles of length 2, composed by (genes in)

chromosomes (xji ) and (Cxj
′

i ), or cycles of length 4, composed by chromosomes (xji ),

(xlk) and (Cxj
′

i Cxl
′

k ).

Recall that the normalized weight for a cycle C is ŵ(C) = w(C)
|C| . In this transfor-

mation, each cycle C is such that ŵ(C) = 0, 0.5 or 1. A cycle C such that ŵ(C) > 0

is a helpful cycle and represents a clause satisfied by one or two literals (ŵ(C) = 0.5

or ŵ(C) = 1, respectively). See an example in Fig. 2.

In this scenario, however, a solution of ffdcj-similarity with performance ratio

r could lead to a solution of max-2sat3 with ratio 2r, since the total normalized

weight for two cycles C1 and C2 with ŵ(C1) = ŵ(C2) = 0.5 (two clauses satisfied by

one literal each) is the same for one cycle C with ŵ(C) = 1.0 (one clause satisfied

by two literals). Therefore, achieving the desired ratio requires some modifications

in f . It is not possible to make these two types of cycles have the same weight, but

it suffices to get close enough.

We introduce special genes into the genomes called extenders. For some p even,

for each edge exji = (Cxji , x
j
i ) of weight 1 in GSσ(A,B) we introduce p exten-

ders α1, . . . , αp into A (as a consequence, they are also introduced into A) and

p extenders αp+1, . . . , α2p into B. Each exji of weight 1 has its own set of ex-

tenders, and the same process is done for each exi
j of weight 1. Edge exji is re-

placed by edges (Cxji , α1) with weight 1 (which we consider equivalent to exji )

and (αp+1, x
j
i ) with weight 0, and edges (αk, αp+k) with weight 0 are added to

GSσ(A,B) for each 1 ≤ k ≤ p (extenders α1 and αp+1 are now part of the

variable component Ci). Regarding new chromosomes in genomes A and B, A is

updated to A ∪ {(α1 −αp)} ∪ {(αk −αk+1) : k ∈ {2, 4, . . . , p − 2}} and B to
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B ∪ {(αk −αk+1) : k ∈ {p + 1, p + 3, . . . , 2p − 1}}. By this construction, which is

still polynomial, the path from xjti to Cxjti in AGσ(A,B) is extended from 1 to

1 + p edges, from {(xjti , Cx
jt
i )} to {(xjti , αtp), (αtp+1, α

t
2), (αt3, α

t
p+2), (αtp+3, α

t
4), . . . ,

(αt1, Cx
jt
i )}. The same occurs for the path from xjhi to Cxjhi (see Fig. 3). Now,

cycles in AGσ(A,B) induced by edges of weight 0 in GSσ(A,B) have normalized

weight 0, cycles previously with normalized weight 1 are extended and have nor-

malized weight 1
1+p , and cycles previously with normalized weight 0.5 are extended

and have normalized weight 1
2+p . Notice that, for a sufficiently large p, 1

1+p is quite

close to 1
2+p , hence the problem of finding the maximum similarity in this graph is

very similar to finding the maximum number of helpful cycles.

(Function g.) By the structure of variable components in GSσ(A,B), and since solu-

tions of ffdcj-similarity are restricted to maximal matchings only, any solution

γ for f(φ) is a matching that covers only edges exji or exi
j for each variable com-

ponent Ci. For a Ci, if edges exji (exi
j) are in the solution then the variable xi is

assigned to true (false), inducing in polynomial time an assignment for each xi ∈ X
and therefore a solution g(f(φ), γ) to max-2sat3. A clause is satisfied if vertices

(or the only vertex) corresponding to its aliases are in a helpful cycle.

(Approximation ratio.) Given f(φ) and a feasible solution γ of ffdcj-similarity

with the maximum number of helpful cycles, denote by c′ the number of helpful

cycles in γ. Notice that c′ is also the maximum number of satisfied clauses of max-

2sat3, that is, the value of an optimal solution for max-2sat3 for any instance φ,

denoted here by opt2sat3(φ). Thus, c′ = opt2sat3(φ).

To achieve the desired ratio we must establish some properties and relations be-

tween the parameters of max-2sat3 and ffdcj-similarity and set some param-

eters to specific values.

Let n := |A| = |B| before extenders are added. We choose for p (the number of

extenders added for each edge of weight 1 in GSσ(A,B)) the value 2n and define

ω = 1
2+p = 1

2+2n and

ε =
1

1 + p
− 1

2 + p
=

1

4n2 + 6n+ 2
,

which implies that ω + ε = 1
p+1 . Thus, it is easy to see that nε < ω, i.e.,

ε <
ω

n
< 1. (3)

If optsim(f(φ)) denotes the value of an optimal solution for ffdcj-similarity with

instance f(φ) and c∗ denotes the number of helpful cycles in an optimal solution of

ffdcj-similarity, then we have immediately that

optsim(f(φ))

ω + ε
≤ c∗ ≤ optsim(f(φ))

ω
. (4)

Besides that

0 ≤ c∗ ≤ n, (5)
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Figure 1 GSσ(A,B) and AGσ(A,B) for genomes A = {(x1
1), (x

2
1), (x

3
1), (x

1
2), (x

2
2)} and

B = {(Cx1
1 Cx1

2), (Cx2
1), (Cx3

1 Cx2
2)} given by function f (Theorem 1) applied to 2sat(3)

clauses C1 = (x1 ∨ x2), C2 = (x1) and C3 = (x1 ∨ x2). In GSσ(A,B), solid edges correspond to

exji and dashed edges correspond to exi
j . In AGσ(A,B), shaded region corresponds to genes of

genome B, and solid (dashed) edges correspond to solid (dashed) edges of GSσ(A,B).

and

c∗ω ≤ optsim(f(φ)) ≤ c∗(ω + ε). (6)

Thus, we have

c∗(ω + ε) = c∗ω + c∗ε

< c∗ω +
c∗ω

n
(7)

≤ c∗ω + 1 · ω (8)

= c∗ω + ω, (9)

where (7) comes from (3) and (8) is valid due to (5).

Now, let cr be the number of helpful cycles given by an approximate solution for

the ffdcj-similarity with approximation ratio r. Then,

Rmax-2sat3(φ, g(f(φ), γ)) =
opt2sat3(φ)

cr
=
c′

cr
≤ r,

where the last inequality is given by Proposition 3 below. This concludes the first

part of the proof. �
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Figure 2 A matching M of GSσ(A,B) and cycles induced by M in AGσ(AM , BM ) for genomes
of Fig. 1. This solution of ffdcj-similarity represents clauses C1 and C3 of max-2sat3
satisfied.

Proposition 2 Let c′ be the number of helpful cycles in a feasible solution of

ffdcj-similarity with the greatest number of helpful cycles possible. Let c∗ be

the number of helpful cycles in an optimal solution of ffdcj-similarity. Then,

c′ = c∗.

Proof. Since c′ is the greatest number of helpful cycles possible, it is immediate that

c∗ ≤ c′.
Let us now show that c∗ ≥ c′. Suppose for a moment that c∗ < c′. Since c∗ and c′

are integers, this implies that c∗ + 1 ≤ c′, i.e.,

c∗ ≤ c′ − 1. (10)

Let C′ be the set of cycles with c′ cycles, i.e., with the maximum number of helpful

cycles possible. Let ŵ(C′) :=
∑
C∈C′ ŵ(C) =

∑
C∈C′ w(C)/|C|. Then

ŵ(C′) ≥ c′ω = (c′ − 1)ω + ω

≥ c∗ω + ω (11)

> c∗(ω + ε) (12)

≥ optsim(f(φ)), (13)
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Figure 3 Detail of graphs GSσ(A,B) and AGσ(A,B) for genomes of Fig. 1 including extenders
for edge (x1

1, Cx1
1) for p = 4. Shaded regions correspond to genes of genome B. Extending all

edges of weight 1 and selecting the matching of Fig. 2, this helpful cycle (only half of it is in this

figure) would have normalized weight 4
4(p+1)

= 1
p+1

= 1
5
= 0.2.

where (11) follows from (10), (12) comes from (9), and (13) is valid due to (6). It

means that ŵ(C′) > optsim(f(φ)), which is a contradiction.

Therefore, c′ = c∗. �

Proposition 3 Let cr be the number of helpful cycles given by an approximate

solution for ffdcj-similarity with approximation ratio r. Let c′ be the same as

defined in Proposition 2. Then,

cr ≥ c′

r
.

Proof. Given an instance f(φ) of ffdcj-similarity, let γr be an approximate

solution of f(φ) with performance ratio r, i.e., val(f(φ), γr) ≥ optsim(f(φ))
r . Let cr be

the number of helpful cycles of γr. Then

cr ≥
( optsim(f(φ))

r

)
ω + ε

>
optsim(f(φ))

r(ω + ω/n)
(14)

=
optsim(f(φ))

rω
· n

n+ 1

≥ c′ω

rω
· n

n+ 1
(15)

=
c′

r
·
(
1− 1

n+ 1

)
=
c′

r
− c′

r(n+ 1)

≥ c′

r
− 1, (16)
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where (14) follows from (3), (15) is valid from (6) and Proposition 2. Then, from (16)

we know that cr > c′

r − 1 and, since cr is an integer number, the result follows. �

We now continue with the proof of Theorem 1.

Proof.[Theorem 1, second part] First, notice that if a problem is APX-hard, the

existence of a PTAS for it implies P = NP. Since a strict reduction preserves

membership in the class PTAS, finding a PTAS for ffdcj-similarity implies a

PTAS for every APX-hard problem and P = NP. A PTAS for ffdcj-similarity

would also imply an approximation ratio better than 2012/2011 = 1.0005 . . ., un-

less P = NP. This follows immediately from the reduction in Theorem 1 with

Rmax-2sat3 = Rffdcj-similarity and the fact that max-2sat3 is shown in [2] to be

NP-hard to approximate within a factor of 2012/2011− ε for any ε > 0.

However, our result is slightly stronger. Notice particularly that the reduction

max-2sat3 ≤ ffdcj-similarity from the first part of the proof can be trivially

extended to max-2sat ≤ ffdcj-similarity by extending variable components to

arbitrary sizes. This increases the lower bound to 22/21 = 1.0476 . . . [5]. �
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